## Suggested Solution 6

(1) In the proof of Lusin's Theorem (Theorem 2.12), it was assumed that $f$ is non-negative, bounded and $A$ is compact. Complete the proof by showing the conclusion still holds when $f$ is finite a.e. and $A$ is of finite measure.

Solution: We divide the proof into three steps.
Step 1. Assume that $f$ is bounded and supported on a compact set $A$. Write $f=f^{+}-f^{-}$. Then both $f^{+}$and $f^{-}$are bounded and supported on $A$. Then by what is proved in Theorem 2.12, the conclusion of Lusin's Theorem holds in this situation.

Step 2. Assume that $f$ is bounded and vanishes outside a measurable set $A$ with $\mu(A)<\infty$. Let $\epsilon>0$ be fixed. By the regularity of $\mu$, there exists a compact set $K$ and an open set $G$ such that $K \subset A \subset G$ and $\mu(G \backslash K)<\frac{\epsilon}{2}$. By Urysohn's Lemma, there exists $h \in C_{c}(X)$ such that $K<h<G$.

Now we apply Step 1 to $\left.f\right|_{K}$, we have there exists $g \in C_{c}(X)$ such that

$$
\mu\left(\left\{x \in X: g(x) \neq\left. f\right|_{K}(x)\right\}\right)<\frac{\epsilon}{2} .
$$

Observe that $g h \in C_{c}(x), g h \equiv g$ on $K$ and $g h \equiv 0$ outside $G$. Hence we have

$$
\{x: g(x) h(x) \neq f(x)\} \subseteq\left\{x: g(x) \neq\left. f\right|_{K}(x)\right\} \cup(G \backslash K) .
$$

Therefore,

$$
\begin{aligned}
\mu(\{x: g(x) h(x) \neq f(x)\}) & \leq \mu\left(\left\{x: g(x) \neq\left. f\right|_{K}(x)\right\}\right)+\mu(G \backslash K) \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Step 3. Assume that $f$ is finite a.e. and vanishes outside a measurable set $A$ with $\mu(A)<\infty$. For each $n \geq 1$, we define

$$
f_{n}(x):= \begin{cases}f(x) & \text { if }|f(x)| \leq n \\ n \cdot \operatorname{sign} f(x) & \text { otherwise }\end{cases}
$$

Then we have $f_{n}(x) \rightarrow f(x)$ for every $x \in X$. Note that

$$
\left\{x: f_{n}(x) \neq f(x)\right\} \subseteq\{x:|f(x)|>n\} .
$$

Since $f$ is finite a.e., supported on $A$ and $\mu(A)<\infty$, we have

$$
\mu(\{x:|f(x)|>n\}) \downarrow 0, \text { as } n \rightarrow \infty .
$$

Hence there exists $n_{0}$, such that

$$
\mu\left(\left\{x: f_{n_{0}}(x) \neq f(x)\right\}\right)<\frac{\epsilon}{2} .
$$

Apply the result of Step 2 to $f_{n_{0}}$, we get a $g \in C_{c}(X)$ such that

$$
\mu\left(\left\{x: g(x) \neq f_{n_{0}}(x)\right\}\right)<\frac{\epsilon}{2} .
$$

Note that

$$
\{x: g(x) \neq f(x)\} \subseteq\left\{x: g(x)=f_{n_{0}}(x), f_{n_{0}}(x) \neq f(x)\right\} \cup\left\{x: g(x) \neq f_{n_{0}}(x)\right\} .
$$

Hence we have $\mu(\{x: g(x) \neq f(x)\}) \leq \epsilon$, completing the proof.
(2) Let $\mu$ be a Riesz measure on $\mathbb{R}^{n}$. Show that for every measurable function $f$, there exists a sequence of continuous functions $\left\{f_{n}\right\}$ such that $f_{n} \rightarrow f$ almost everywhere.

Solution: For each $k \geq 1$, we define a set $B_{k}:=\left\{x \in \mathbb{R}^{n}:|x| \leq k\right\}$ and a function

$$
f_{k}(x):= \begin{cases}f(x) & \text { if } x \in B_{k} \text { and }|f(x)| \leq k \\ k \cdot \operatorname{sign} f(x) & \text { if } x \in B_{k} \text { and }|f(x)|>k, \\ 0 & \text { otherwise }\end{cases}
$$

Then it is easy to see that $f_{k}(x) \rightarrow f(x)$ at every $x \in \mathbb{R}^{n}$. Note that $f_{k}$ is bounded and supported on a set of finite measure, we can apply the result of Exercise (1) to get a $g_{k} \in C_{c}\left(\mathbb{R}^{n}\right)$, such that

$$
\mu\left(\left\{x \in \mathbb{R}^{n}: f_{k}(x) \neq g_{k}(x)\right\}\right)<\frac{1}{2^{k}} .
$$

Let $A_{k}=\left\{x \in \mathbb{R}^{n}: g_{k}(x) \neq f_{k}(x)\right\}$. Then by the Borel-Cantelli Lemma, we have for almost every $x \in \mathbb{R}^{n}, x \in A_{k}$ for finite many $k$. As a consequence, we have $g_{k} \rightarrow f$ a.e..
(3) Here we construct a Cantor-like set, or a Cantor set with positive measure, with positive measure by modifying the construction of the Cantor set as follows. Let $\left\{a_{k}\right\}$ be a sequence of positive numbers satisfying

$$
\gamma \equiv \sum_{k=1}^{\infty} 2^{k-1} a_{k}<1 .
$$

Construct the set $\mathcal{S}$ so that at the $k$ th stage of the construction one removes $2^{k-1}$ centrally situated open intervals each of length $a_{k}$. Establish the facts:
(a) $\mathcal{L}^{1}(\mathcal{S})=1-\gamma$,
(b) $\mathcal{S}$ is compact and nowhere dense.
(c) $\mathcal{S}$ is perfect hence uncountable.

Note. A set $A$ is perfect if for every $x \in A$ and $\epsilon>0,\left(B_{\epsilon}(x) \backslash\{x\}\right) \cap A \neq \emptyset$, that is, every point in $A$ is an accumulation point of $A$. It is known that a perfect set must be uncountable.

## Solution:

(a) As the intervals removed at the same stage or different stages are mutually disjoint, we have

$$
\begin{aligned}
\mathcal{L}^{1}(\mathcal{S}) & =1-\sum_{k=1}^{\infty} 2^{k-1} \text { length of interval removed in the } \mathrm{k} \text { th stage } \\
& =1-\sum_{k=1}^{\infty} 2^{k-1} a_{k} \\
& =1-\gamma
\end{aligned}
$$

(b) Let $S_{n}$ be the set of points left in $[0,1]$ after the $n$-th level construction. Then $S_{n}$ is descending and $\mathcal{S}=\bigcap_{n=1}^{\infty} S_{n}$. Notice that $S_{n}$ is a union of $2^{n}$ mutually disjoint closed intervals hence is compact. Hence $\mathcal{S}$ is compact. The $2^{n}$ components of $S_{n}$ are of the same length

$$
b_{n}=2^{-n}\left(1-\sum_{k=1}^{n} 2^{k-1} a_{k}\right)
$$

Clearly $b_{n} \rightarrow 0$ as $n \rightarrow \infty$. Hence $\mathcal{S}$ does not have an interior point, since otherwise $\mathcal{S}$ will contain an open interval which is also contained in every $S_{n}$, which is impossible since $b_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Hence $\mathcal{S}$ is nowhere dense.
(c) If $x \in S$, then $x$ belongs some connected component of $S_{n}, \forall n \in \mathbb{N}$. Observe that the
end points of the $2^{n}$ intervals of $S_{n}$ are in $S$, so $\exists y_{n}$ end point of one of the interval s.t.

$$
\left|y_{n}-x\right| \leq b_{n} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

We have $S$ is a perfect set.
(4) Let $0<\varepsilon<1$. Construct an open set $G \subset[0,1]$ which is dense in $[0,1]$ but $\mathcal{L}^{1}(G)=\varepsilon$.

Solution: Similar to the construction of Cantor's familiar "middle thirds" set. Define $K_{0}=[0,1]$ and inductively define $K_{n} \subset K_{n-1}$ by removing an open interval of length $2(1-\varepsilon) 2^{-2 n}$. By the construction each $K_{n}$ has $2^{n}$ connected components with length $a_{n}$ which satisfy

$$
\left\{\begin{array}{l}
a_{n}=\frac{1}{2}\left(a_{n-1}-2 \varepsilon 2^{-2 n}\right), \quad n=1,2, \ldots \\
a_{0}=1,
\end{array}\right.
$$

from which we get $a_{n}=(1-\varepsilon) 2^{-n}+\varepsilon 2^{-2 n}$. Thus

$$
\mathcal{L}^{1}(K)=\lim _{n \rightarrow \infty} \mathcal{L}^{1}\left(K_{n}\right)=\lim _{n \rightarrow \infty} 2^{n} a_{n}=1-\varepsilon .
$$

Take $G=[0,1] \backslash K$, then $\mathcal{L}^{1}(G)=\varepsilon$. On the other hand, $G$ is dense in $[0,1]$ since the interior of $K$ is empty.
(5) Let $A$ be the subset of $[0,1]$ which consists of all numbers which do not have the digit 4 appearing in their decimal expansion. Find $\mathcal{L}^{1}(A)$.
Solution: Let $B=\{0,1,2,3,5,6,7,8,9\}$, the set $F_{0}=\left\{x \in[0,1]: x=0.4 a_{2} a_{3} \cdots, a_{j}=\right.$ $0,1,2, \cdots, 9\}=\left[\frac{4}{10}, \frac{5}{10}\right]$ is of Lebesgue measure $\frac{1}{10}$. Fix $y_{1} \in B,|B|=9^{1}=9$, the set $F_{y_{1}}=\left\{x \in[0,1]: x=0 . y_{1} 4 a_{3} \cdots, a_{j}=0,1,2, \cdots, 9 \forall j \geq 3\right\}=\left[\frac{y_{1}}{10}+\frac{4}{100}, \frac{y_{1}}{10}+\frac{5}{100}\right]$ is of Lebesgues measure $\frac{1}{100}$. Fix $\left(y_{1}, y_{2}\right) \in B^{2},\left|B^{2}\right|=9^{2}=81$, the set $F_{\left(y_{1}, y_{2}\right)}=\{x \in[0,1]$ : $\left.x=0 . y_{1} y_{2} 4 a_{4} \cdots, a_{j}=0,1,2, \cdots, 9 \forall j \geq 4\right\}$ is of measure $\frac{1}{1000}$. Continuing the process, we have

$$
A=[0,1] \backslash\left(\bigcup_{n=1}^{\infty} \bigcup_{\left(y_{1}, y_{2}, \cdots, y_{n}\right) \in B^{n}} F_{\left(y_{1}, y_{2}, \cdots, y_{n}\right)} \cup F_{0}\right)
$$

and as all $F_{\left(y_{1}, y_{2}, \cdots, y_{n}\right)}, F_{0}$ are disjoint, we have

$$
\begin{aligned}
\mathcal{L}^{1}(A) & =1-\frac{1}{10}-\sum_{n=1}^{\infty} \sum_{\left(y_{1}, y_{2}, \cdots, y_{n}\right) \in B^{n}} \frac{1}{10^{n+1}} \\
& =1-\frac{1}{10}-\sum_{n=1}^{\infty} \frac{9^{n}}{10^{n+1}} \\
& =0 .
\end{aligned}
$$

(6) Let $\mathcal{N}$ be a Vitali set in $[0,1]$. Show that $\mathcal{M}=[0,1] \backslash \mathcal{N}$ has measure 1 and hence deduce that

$$
\mathcal{L}^{1}(\mathcal{N})+\mathcal{L}^{1}(\mathcal{M})>\mathcal{L}^{1}(\mathcal{N} \cup \mathcal{M})
$$

Remark: I have no idea what $\mathcal{L}^{1}(\mathcal{N})$ is, except that it is positive.
Solution: We first prove that every Lebesgue measurable subset of $\mathcal{N}$ must be of measure zero. Let $A$ be a Lebesgue measurable subset of $\mathcal{N},\{A+q\}_{q \in \mathbb{Q} \cap[0,1)}$ is a sequence of disjoint measurable set contained inside $[-1,2]$. By translational invariance of Lebesgue measure,

$$
\mathcal{L}^{1}\left(\bigcup_{q \in \mathbb{Q} \cap[0,1)} A+q\right)=\sum_{q \in \mathbb{Q} \cap[0,1)} \mathcal{L}^{1}(A+q)=\sum_{q \in \mathbb{Q} \cap[0,1)} \mathcal{L}^{1}(A)<\infty,
$$

Therefore we must have

$$
\mathcal{L}^{1}(A)=0 .
$$

We try to prove by contradiction, suppose there is an open set $G$ s.t. $\mathcal{L}^{1}(G)=1-\varepsilon<1$ and $G \supseteq \mathcal{N}^{c}$. Then $[0,1] \backslash G$ is a measurable subset of $\mathcal{N}$ satisfying

$$
0<\varepsilon=\mathcal{L}^{1}([0,1])-\mathcal{L}^{1}(G) \leq \mathcal{L}^{1}([0,1] \backslash G)
$$

Contradicting to our previous result.
(7) Let $E$ be a subset of $\mathbb{R}$ with positive Lebsegue measure. Prove that for each $\alpha \in(0,1)$, there exists an open interval $I$ so that

$$
\mathcal{L}^{1}(E \cap I) \geq \alpha \mathcal{L}^{1}(I)
$$

It shows that $E$ contains almost a whole interval. Hint: Choose an open $G$ containing $E$
such that $\mathcal{L}^{1}(E) \geq \alpha \mathcal{L}^{1}(G)$ and note that $G$ can be decomposed into disjoint union of open intervals. One of these intervals satisfies our requirement.

Solution: As $\exists n \in \mathbb{N}$ s.t. $\mathcal{L}^{1}(E \cap(-n, n))>0$, WLOG we may assume that $E$ has finite outer measure, then $\forall \alpha \in(0,1), \exists$ open $G$ s.t. $G \supseteq E$ and

$$
\mathcal{L}^{1}(E)+\frac{(1-\alpha)}{\alpha} \mathcal{L}^{1}(E) \geq \mathcal{L}^{1}(G)
$$

Hence

$$
\mathcal{L}^{1}(E) \geq \alpha \mathcal{L}^{1}(G)
$$

we can write $G=\bigcup_{i=1}^{\infty} I_{i}$ where $I_{i}$ are disjoint open intervals. Then one of these $I_{i}$ must satisfy the desired property, otherwise

$$
\mathcal{L}^{1}(E) \leq \sum_{i=1}^{\infty} \mathcal{L}^{1}\left(E \cap I_{i}\right)<\alpha \sum_{i=1}^{\infty} \mathcal{L}^{1}\left(I_{i}\right)=\alpha \mathcal{L}^{1}(G)<\infty
$$

contradicting the above inequality.
(8) Let $E$ be a measurable set in $\mathbb{R}$ with respect to $\mathcal{L}^{1}$ and $\mathcal{L}^{1}(E)>0$. Show that $E-E$ contains an interval $(-a, a), a>0$. Hint:
(a) $U, V$ open, with finite measure, $x \mapsto \mathcal{L}^{1}((x+U) \cap V)$ is continuous on $\mathbb{R}$.
(b) $A, B$ measurable, $\mu(A), \mu(B)<\infty$, then $x \mapsto \mathcal{L}^{1}((x+A) \cap B)$ is continuous. For $A \subset U, B \subset V$, try

$$
\mathcal{L}^{1}((x+U) \cap V)-\mathcal{L}^{1}((x+A) \cap B) \mid \leq \mathcal{L}^{1}(U \backslash A)+\mathcal{L}^{1}(V \subset B) .
$$

(c) Finally, $x \mapsto \mathcal{L}^{1}((x+E) \cap E)$ is positive at 0 and if $(x+E) \cap E \neq \emptyset$, then $x \in E \backslash E$.

## Solution:

(a) We prove the case when U is an open interval $I$, note for all subset $A, B$ of $\mathbb{R}$,

$$
((x+A) \cap B) \backslash(((y+A) \cap B))=(x+A) \backslash(y+A) \cap B .
$$

Therefore

$$
\left|\mathcal{L}^{1}((x+I) \cap V)-\mathcal{L}^{1}((y+I) \cap V)\right| \leq \mathcal{L}^{1}((x+I) \backslash(y+I))+\mathcal{L}^{1}((y+I) \backslash(x+I)) \leq 4|x-y| .
$$

the function is Lipschitz and continuous. In general $U$ can be written as countable union of disjoint open intervals $\left\{I_{i}\right\}$, as $\sum_{i=1}^{\infty} \ell\left(I_{i}\right)<\infty, \exists N$ s.t. for all $k \geq N$,

$$
\sum_{i=k}^{\infty} \ell\left(I_{i}\right)<\varepsilon .
$$

We have
$\sum_{i=1}^{\infty} \mathcal{L}^{1}\left(\left(x+I_{i}\right) \cap V\right)-\mathcal{L}^{1}\left(\left(y+I_{i}\right) \cap V\right) \leq \sum_{i=1}^{k} \mathcal{L}^{1}\left(\left(x+I_{i}\right) \cap V\right)-\mathcal{L}^{1}\left(\left(y+I_{i}\right) \cap V\right)+2 \varepsilon<3 \varepsilon$
for $x$ sufficiently close to $y$. Similarly

$$
\sum_{i=1}^{\infty} \mathcal{L}^{1}\left(\left(y+I_{i}\right) \cap V\right)-\mathcal{L}^{1}\left(\left(x+I_{i}\right) \cap V\right) \leq 3 \varepsilon
$$

We have the function $\mathcal{L}^{1}((x+U) \cap V)$ is continuous.
(b) Obviously, $((x+U) \cap V) \backslash((x+A) \cap B) \subseteq U \backslash A \cup V \backslash B$. Therefore, we have

$$
0 \leq \mathcal{L}^{1}((x+U) \cap V)-\mathcal{L}^{1}((x+A) \cap B) \leq \mathcal{L}^{1}(U \backslash A)+\mathcal{L}^{1}(V \backslash B)
$$

Note RHS is independent on $x, y$, so the result follow from outer regularity of Lebesgue measure.
(c) the function $\mathcal{L}^{1}((x+E) \cap E)$ is continuous and positive at $0, \exists a>0$ s.t the function remain positive on $(-a, a)$, i.e

$$
(x+E) \cap E \neq \emptyset
$$

and $\forall x \in(-a, a), \exists e_{1} e_{2} \in E$ s.t

$$
x=e_{1}-e_{2} \in E-E .
$$

Alternate proof. The following is a simple proof due to Karl Stromberg.
By the regularity of $\mathcal{L}^{1}$, for every $\varepsilon>0$ there are a compact set $K \subset E$ and an open set $U \supset E$ such that

$$
\mathcal{L}^{1}(K)+\varepsilon>\mathcal{L}^{1}(E)>\mathcal{L}^{1}(U)-\varepsilon .
$$

For our purpose it is enough to choose $K$ and $U$ such that

$$
2 \mathcal{L}^{1}(K)>\mathcal{L}^{1}(U)
$$

Since $K \subset U$, there is an open cover of $K$ that is contained in $U$. Since $K$ is compact, one can choose a small neighborhood $V$ of 0 such that

$$
K+V \subset U
$$

Let $v \in V$, and suppose

$$
(K+v) \cap K=\emptyset .
$$

Then,

$$
2 \mathcal{L}^{1}(K)=\mathcal{L}^{1}(K+v)+\mathcal{L}^{1}(K)<\mathcal{L}^{1}(U)
$$

contradicting our choice of $K$ and $U$. Hence for all $v \in V$ there exists $k_{1}, k_{2} \in K \subset E$ such that

$$
k_{1}+v=k_{2},
$$

which means that $V \subset E-E$.
(9) Give an example of a continuous map $\phi$ and a measurable $f$ such that $f \circ \phi$ is not measurable. Hint: May use the function $h=x+g(x)$ where $g$ is the Cantor function as $\phi$.

Solution: Let $h=x+g(x)$ where $g$ is the Cantor function. Then $h:[0,1] \rightarrow[0,2]$ is a strictly monotonic and continuous map, so its inverse $\phi=h^{-1}$ is continuous too. Since $g$ is constant on every interval in the complement of C , one has that $h$ maps such an interval to an interval of the same length. Hence $\mu(h(C))=1$, where $C$ is the cantor set. Then $h(C)$ contains a non-measurable set $A$ due to Proposition 3.3. Let $B=\phi(A)$. Set $f=\chi_{B}$. Then $f \circ \phi$ is not measurable since its inverse image of 1 is $A$.

